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Abstract
In the present paper we discuss a numerical methed to solve boundary value problems for a class
of ordinary second-order differential equations. The original nonlinear problem is reduced to a sequence of
lincar problems and these are solved by the finite-difference method. The convergence of the numerical

cesults is accelerated by using extrapolation methods.

1.Introduction
Recently, we have analysed in [6] the use of convergence acceleration techniques to improve the
accuracy of finite-difference schemes. There we considered a boundary-value problem (BVP) for a second-

order linear differential equation on the interval [0,1]:

E (o §2) —kpu=t (1.1)
u{0)=u(1)=0, (1.2)

where the cocfficients k; and k; are piecewise smooth functions in [0,1] and the right-hand side [ is a
function that is smooth in ]0,1{ but may be unbounded or have unbounded derivatives near the boundary.
For the case when f(x) = x¥( 1- x )ﬁ , o and J being real numbers, greater than —2, we have derived
asymptotic expansions for the error of the usual finite-difference method and used the E-algorithm of
Brezinski [1] to accelerate the convergence of the method. The performance of this scheme was illustrated by
several numerical examples.

Although this method was not designed for. any specific physical problem, it turns out that
similar problems with singularities arise in many applications. For example, in [10] and [11] numerical
methods for the Thomas-Fermi problem and other related BVP's have been considered. As it is pointed out
in these papers, the main trouble when solving numerically that equation results from the existence of a
degeneracy at the endpoint 0. Although the scheme we developped in (6] for lincar problems with
singularilies is not directly applicable to that problem (the Thomas-Fermi equation is non-linear) , it is clear

that the nature of the mathematical problem is essentially the same.
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is to generalize the scheme, developped in (6], to the case of non-

The aim of the present work
we shall consider a generali
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linear degenerate BVP. As an important particular case,

Fawler equation with the form:
éf-)i—{v-ct"y“z() 1 eln ., w3
dt?

. We shall be concerned about the solution of (1.3) which

where p, q and ¢ are real numbers, p>-2, q>1

satisfics the boundary conditions:

y(@=1 y(1)=10. (1.4)

ion is said to be degenerate.

Fermi cquation, studied in [10] and [t1}.
-2<p<-1 (according to the

We are specially interested in the case when -2<p<0. In this case the equat
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where each iterate is the solution of a lincar BVP.

2, we describe the method used to so

In Sec.3, we use the E-algorithm of

by iterative processes,
approximated by means of a finite-difference scheme. In Sec.
(1.4) and present asymptotic expansions for the discretization error.
Brezinski to accelerate the convergence of the oblained numerical solutions, in some particular cases. The use
ptotic expansions, presented in the previous section. The results

of the the E-algorithm is based on the asym
for the casc p= —% are compared with the ones, obtained in [11].

2. Asymptotic Expansions for the Discretization Error
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. This means that th
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x) =0 or yglx) = 1-x,

iterative schemes, based on the Piccard and the N

problem is considered as the limit of a functions sequence, eac
we start with an initial function , ¥l and

In the case of the Piccard sequence,
define each subsequent iterate as {he solution of the following BVP:

0<x<l, (2.1
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(0= 1, y (1) =03 v=1,2... . (2.2)
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In order to approximate the solution of (2.1)-(2.2) , we select a set of n equispaced points,
denoted Xy ={x,, Xg,.--s X}, on the interval {0.1}, and define h:rl!- . Using central difference approximationA

we replace (3.1) and (3.2) by

ggshz §, (o B+ cq T xp N P = 0(x;, Fpg(xi, B) ), i=1,20001 (2.9)
7,00,h) =13 §,(0,1)=0, (2.4)

where
flx . yy= x®(y? - ay) (2.5)

and Ehz denotes the finite-difference operator defined by
5}\2 v(xph) = v (x4 . h) —2v(x;, h) + v(x.,, h % (2.6)

here and throughout the text, v(x,h) will denote a grid function, i.e., a function defined at points of the
grid Xy.. In particular, if v(x) is a function, defined on [0,1], then v(x,h) is the grid function resulting from

the evaluation of v(x) at the points of the grid X;. Let

®,(x.h) =7,(x,h) =y,(x)

be the error of the v-th Piccard iterate, obtained by our method. In order to accelerate the convergence of
the numerical results, obtained from the solution of (2.3)-(2.4), we must know an symptotic expansion of
$,(x.h), valid as h—0. In the regular case, when the solution of (2.1)-(2.2) is a sufficiently smooth function,
the discretization error may be expanded in a series of even powers of the stepsize h. This problem is
discussed in detail by Marchuk and Shaidurov {8], in the case of linear differential equations, and by Stetter
{14], in a more general case. In the present case, however, due to the singularity of the solution at x=0, the
discretization error cannot be represented as a power series in h. Thercfore the simplest extrapolation
algorithms, such as Richardson extrapolation {13], are not applicable to the solution of (2.3)-(2.4). In [7], we
have analysed this problem in detail and obtained asymptotic expansions of @,(x,h), in the following

particular cases:

a) p= —-% ,q:% (Thomas-Fermi equation);
by p=-1l,q=1%

— .3 -9
c) p= -7:a=7

We shall now recall the main results obtained in that work, for these three cases. Note that if

M with m,k € N, equation (2.1) may be reduced, by the substitution x= tX | to the form

=i
(g dy dy Zom | _
k2(° o+ Rt F)rcar®my=0, 0<t<l (2.7)
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The general solution of this last equation may be found in the form of a series that converges on the interval
[0,1] . by the Frobenius’s method (see [4], [12]). Based on this fact, the form of the needed asymptotic ertor i
expansion may be obtained, using the same method folllowed by Mayers in [9], where he derived an
asymptotic error expansion for a singular differential equation. This method was used by us for the

derivation of all the formulae, presented below.

= -l q=3
) p=-35.4=5-
In this case, using the Frobenius's raethod, we have shown that the solution of the boundary

value problem (2.1)-(2.2) may be represented in the form

ooy k
YAX) =1+ yo X+ X yepx? . VXE 0,1}, v=12,.. (2.8)
k=3

Using this result and the properties of the finite-difference scheme (2.3)-(2.4), we have concluded that the

discretization error, in this case, allows an asymptotic expansion with the form

24l

5
&, (x,h) = C, ,(x) h? + Gy, (x) h*+ Cy (%) B2 + Cy 1(x) Wln b+ O(1%) (as h-0)2.9)

Np=~-1,q=2

In this case, using the same method to obtain the solution of (2.1)-(2.2) in the form of a series,

we have obtained

v =1+ yy,xlnx+§, x+P0nx) x*+ .+ Py (Inx) NN (2.10)

where Py { y) is a polynome of degree not greater than k , with constant coefficients, From this result, we

have derived the following asymptotic error expansion:

®,(x,h) = Cp ,(x) b Inh + Cy (x) b+ Cy ,(x) B3 (In h)? + Cy(x) h2ln h + O(h?) (2.11)

3)p=—%,q=%-

In this last case, usin g the same method as in a) and b), we came to the following

representation of the Piccard iterates:

o) 3k © 3k 3
yulx) = kEOY:m,u x4+ xkzﬂ)'3k+4.v x A =ldy,xttypx+e (212

Further, we used {2.12) to show that the discretization error, in Lhis case, may be expanded in

the following form:

3 3 7
®,(x.h) = C, ,(x) h¥ + Cp (%) ht Cy,(x) h? + Cg hT +O(?) (as =) . (2.13)
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by us for the

f the boundary

(2.8)

«cluded that the

1-0%2.9)

form of a series,

(2.10)

ym this result, we

(h?) (2.11)

to the following

(2.12)

\ay be expanded in

Y. (213)

These are the main results that we use in the next section, where we shall apply the E-algorithm

to accelerate the convergence of the numerical results.
3. Convergence Acceleration and Numerical Resuits

{n this section we shall present some numerical results, obtained by applying a known
extrapolation method to Lhe solutions of the the finite-difference scheme (2.3)-(2.4). The iterates 7,(x.h)
were computed for a a series of different stepsizes hy = hg/ 9k k=12,...,7 . For each value of h, the terms

of the scquences {7,(x,h)} were computed untill the condition

n 1
[Fuar(eh) = 7u0xh) o =( X (iu+1(xi,h)—3}v(xi‘h))2)§ < e (3.1)

=

was satisfied, for a given ¢. In our computations, since we used double precision arithmetics, we set e=10"1
Defining the value of v from (3.1}, we may now consider, for cach gridpoint x;, a sequence

Fulxihg)y  Fulxi Byl ons Julxphg) (3.2)
[n our computations, we have used the following stepsizes
he=1/30, hy= hy /2, k=127 (3.3)

The sequences (3.2) were used as the basis of the extrapolation process. When we apply an extrapolation
algorithm we obtain, from the sequence {3.2), sucessive transforms. Each transform is a sequence that must
converge to the same limit ¥y (x). If each transform converges with an order higher than the previous one,
we say that the extrapolation algorithm accelerates the convergence of the original sequence.

When an cxpansion of the error is known. such as the ones obtained in Sec. 3, a natural way to
accelerate the convergence of the sequence (3.2) is to use the E-algrithm of Brezinski [1],(2] and Ilavie [5].
This is a very general algorithm designed under the assurmmption that we know the asymptotic error

expansion for a given sequence (S4) ¢
S, =S+ a,g,(n) + 2,8, (n) +otag(n) , n=012, .., (3.4)

where g.(n) are predefined sequences, which satisfy the condition g (n) =o( gi(n) ), when n—oo. If r+1

terms of the sequence S are known, we can compute S by solving the linear system

Saei =5+ ayg (n+i) + a,gq(n+Hi)+ Fay glo+i), i=0,1,...r. (3.5)

n
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Usually the terms of S, do not satisfy {3.4) exactly (to obtain (3.4) we must ignore the remainder of the
asymptotic error expansion). Therefore,the solution of (3.5) is only an approximmation of S and depends on
n and k. We shall denote this value by Ek(") The E-algorithm is a recursive way to compute Ek("). Note
that the usual algorithms to solve linear systems (such as gaussian elimination or T.U factorization) are not
(n)

,

recommendable to solve (3.5), because they are numerically unstable in this case. The computation of Ey

using the E-algorithm, starts with

Eo™ =S, . n=0,1,20 pa (3.6)
2oi(n) = &(n) , =120, n=h2ang - (3.7
For k=1,2,...,n,, and n=0,1,...,n.,, ~k the recursive formnulae are (see [1])
E . _g ()
Ek(n) = Ek-l(n) + gk-x,k(n) k-‘(n+l) ! (ny 7 (38)
k-1.k ~ Bkrk
2 0 _ g (a¥D)
sk.a(") =g M+ gk-l,k(n) 'U(nm LR ar KL R - (3.9)
8. ~ Bk-1k

Here g, i(") are auxiliary sequences, which depend only on the terms g(n) of the asymptotic expansion (3.4).
To represent the extrapolalion process, the values of Ek(“) are usually displayed in a double-entry array,

with the form

EO(O}:: 50 ;
Eo(l): Sl ) El(O) 5
EP=s,, g, B (3.10)

E°(3)= Sy, Elu, , Ez(l) . B3(°) ;

The first column of this array is the initial sequence {3.2), whose convergence we want to accelerate (in our

case, the sequence ¥,(x;, hy) , k=0,1,2,....,7. Each subscquent columnn contains a new transformed sequence.

hie performance of the E-algorithm as a convergence accelerator is evaluated by analysing the behaviour of
the sucessive columns of the E-array.

In the next lines we present some numerical results, obtained for the boundary-value problem,

considered in the previous sections, and comment these results. As done in the previous sections, we shall

present these results separately for different values of p: p= —%, p=-1,p= —%,

=l g=3
a)p=—3,955-
The first numerical results we present here for the problem (1.3)-(1.4) were obtained in the case
pz—%, q= %, c=-1. In this case the BVP (1.3)-(1.4) is known as the Thomas-Fermi problem. The Piccard
approximation of the solution of this problem which satisfies (3.1) was obtained with v=15 (in the casc

yo(x) = 0) or v=14 (if yo(x)=1- x). Tn table 1 we present the values of §,5(x;,h),
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factorization) are not

;omputation of Ek(“),

(3-6)
(3.7)

(3.8)

L (39

iptotic expansion (3.4).

1 a double-entry array,

(3.10)

ant to accelerate (in our
w transformed sequence.

alysing the behaviour of

soundary-value problem,

evious sections, we shall

were obtained in the case
mi problem. The Piceard

i with v=15 (in the case

X= i/10, i=1,2,...,9, obtained by the present method with different stepsizes . In this table we present also

the best approximations obtained by the extrapolation method, in each gridpoint. In this case , the

e

extrapolation process was based on the asymptotic error expansion (2.9).This means that the g;(n) sequences,

Ak

in this case, have the form:

3 3
gy(0) = (1) go(0) = (h)? s ga(m)=(hy)® s - 31

Comparing the columns of the E-array for each x;, we observe that the values of the first column (Eo(“))
have 3 common decimal digits ; the terms of the column E2(“) have 6 common digits ; the number of
common digits in the column E4(n) and in the remaining columns is 10. Based on this fact, we have taken
the common digits of Eq(n) as the best approximations, obtained by extrapolation. The values in the last
column of table 1 agree with the corresponding values, presented in [11}). The accuracy of the results
oblained by the E-algorithm was compared with the accuracy, given by the ¢-algorithm (3] and Richardson
extrapolation. Since the exact solution is not known, we considered as a measure of the accuracy the

minimal difference between successive terms of a given column:

fi = min. g 0+ - g (3.12)
The results obtained by the E-algorithm, for each column, are the most accurate. In this case, we have, for
the second column, by 9% 1071Y for the fourth column, ;= L X 10!, there is no improvement in the
results of the remaining columns. Using the ¢-algorithm, we can also obtain high accuracy. The
corresponding values are by 2x 1072 and 6, = 3x 10712, As it could be expected, the results given by the

Richatrdson extrapolation are considerably less accurate. In this case, we have 63 = 3% 107, Sy 1x 107

x Noo0 | N=480 | N=3840 EXTRAP. |
0.1 |0.8497892482 |0.8494898911 0.8494750006 | 0.8494743810
0:2 | 0.7275141383 | 0.7272451707 07272324534 | 0.7272318523

0.3 |0.6195088560 |0.5193056204 | 06192950221 0.6192045151
0.4 |0.5206216119 0 5304230737 |0.5204149288 " 0.5204145060
05 |0.4277212100 |0.4275577758 |0.4275503624 {0:4275500169
o6 00388225043 |0.3386022878 |0.3386864222 | 0.3386861435
o7 |0.2525003851 |0.2524027674 |0.2523083962 | 02523081933
o8 |0.1677173342 |0.1676520630 |0.1676491563 | 0.1676400216
|09 | 0083721353 00836582801 | 0.0836868348 " | 0.0836867675

Table 1. Approximate values of the solution in the case p:———li, q= % (Thomas-Fcrmi problem)
at the gridpoints x;=0.1, 0.2, ..,0.9 . Here and in the next tables N is the total number of gridpoints used for
each approximation; the last column contains the best approximation of the solution, obtained by

extrapolation using the E-algorithm.
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b) p= —1, g=2.

Next we have analysed the numerical results in the case p= - 1, q=2, ¢= ~ 1.

If we start the Piccard iteration process with ¥ol
which satisfies (3.1) is obtained with v=22;

(3.1) is obtained with p=

x) =0, the approximation of the solution

if we start with Yolx) = 1 —x , the approximation which satisfies

21. In table 2 we present the values of Yarlx,h) , x=i/10, i=1,2,..

-9, obtained by
the present method with h=1/60, h=1/480 and h=1/3840.

In this table we also present the results

obtained by extrapolation. The best approximations obtained have apparently 9-10 digits, depending on the

difference method is given by
sequences, in this case, should have the form:

gi(n) =h In (), g,(n) = by, ga(n)=h,*(n h )? gq(n)=h?
8s(n) =h,*(In b )*, g.(n)=h? (In ho)?

considered gridpoints. In this case the asymptotic error expansion of the finite-

(2.11).According to this results, the g(n)

In by, gyn)=h 2
(3.13)

In spite of this, it was observed that more accurate numerical resulis can be obtained,

if we ignore the
terms g,(n), g4(n) and g4(n) .

This indicates that the corresponding coefficients ap,a4

and a,, on the right-
hand side of (3.5), must be zero or close to zero. The resul

ts obtained using the E-algorithm were compared
with the ones that are given by other extrapolation algorithms. Using again the value of (3.12) as a measure
, for the E-algorithm, §y = 2% 10719, 6o 10710 in the remaining columns of the E-
array the results are not improved. In the case of the c-algoritl

08 6~ Txip

of accuracy, we have

i, the corresponding values are 6, a

& 6x
10 9f the Richardson extrapolation is used, w

e obtain &y & 2x 10710, 5, & gx 101,
The success of the Richardson extrapolation in this case is explained by the fact that the first logarithmic

terms of the asymptotic error expansion may be ignored, as seen above,

[ x N=60 N=480 N=3840 EXTRAP. |
0.1 0.7856713601 0.7808375568 | 0.7802145946 0.780125259
0.2 1 0.6619833203 | 0.6580410620 0.6575404128 | 0.657468748 *]

0.3 ’0.5620923700 0.5588211863 | 0.5584077292 0.55834858
0.4 0.4732135031 | 0.4704997105 0.4701574951 | 0.4701085515
0.5 0.3901168829 0.3878995908 | 0.3876203645 0.3875804363
0.6 0.3101 516883 | 0.3083978723 | 0.3081772098 0.3081456595
07 0.2318377682 | 0.2305301570 0.2303657404" | '0.2303122339
0.8 0.1543208470 | 0.1534512950 0.1533420117 0.1533263885

LO.Q 0.0771207308 | 0.0766862143 | 0.0766316259 | 0.0766238223

Table 2. Approximate values of the solution in the case p=-1.0, q=2.0 at the gridpoints

%=0.1,0.2, ...,0.9 .




tion of the solution
ation which satisfies
12,...,9, obtained by
present the results
s, depending on the
methed is given by

(3.13)

we ignore the

wd ay, on the right-
hm were compared
(3.12) as a measure
g columns of the E-
alues are 6, x §x
0 s, ~ 9x10M,

he first logarithmic

at the gridpoints

¢} p =—5/4, q=9/4.

Finally we present the numerical results obtained in the case p=— %, q:%, c=—1

In this case, the Piccard iterates satisfy condition (3.1) beginning with v=28 or y=27 , if we
start with yo(x) = 0 or yo(x)=1-x, respectively . In table 3 we present the values of §o2(x.h) , x= /10,
i=1,2,.009, obtained with diferent stepsizes, as in the previous examples. In this table we also present the
results obtained by extrapolation using the E-algorithm. In this case the asymptotic error expansion of the

finite-difference method is given by {2.13). This means that the g;(n) sequences, in this case, have the form:
3 3 7 2
g(n) = (h)¥, gy(n) = by« g3(m)=(hy)? , gy(m) = hot, gg(n) =(hy)% o - (3.14)

The best approximations obtained have apparently 7-8 exact digits, depending on the considered gridpoints.
Comparing with other extrapolation algorithms, the E-algorithm gives the most accurate results, with &,
~3x 107, 5, =9x 10® and 8y = 103, When we applied the ¢-algorithm to the same numerical results,
we obtained 8, =~ 1x 10'6, 8y = 2% 1077 and 8 = 2x 10°8. In the case of the Richardson extrapolation, the

convergence was not accelerated, as it can be seen form the following values: &, =~ fx 10°%, by =5x 10°%, b

~5x105.
| N=60 N=480 N=3840 EXTRAP.
0.1 0.7243310984 | 0.7086484640 | 0.7052930535 | ' 0.70439
0.2/ 0.6058343675 | 0.5934905863 | 0.5908652028 | 0.5901638
0.1 0.5145680324 | 0.5044204038 | 0.5022648263 | 0.5016888
0.4 | 04340467335 | 0.4256413499 | 0.4238566193 | 0.4233797
0.5 ] 0.3585507266 | 0.3516769786 | 0.3502177754 | 0.3498278
‘0.6 0.2855147462 | 0.2800702786 | 0.2789146600 | 0.2786059
0.7 0.2136540855 | 0.2095903303 | 0.2087278747 | 0.20849740
0.8 | 0.1423038323 | 0.1395999025 | 0.1390260983 | 0.13887276
0.9 0.0711327953 | 0.0697815237 | 0.0694947898 | 0.06941817

Table 3. Approximate values of the solution in the case p= «-%, q= % at the gridpoints x;=0.1,

0.2, ... 0.9.
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