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Abstract. In this paper, we describe a neural field model which explains how a population of cortical 
neurons may encode in its firing pattern simultaneously the nature and time of sequential stimulus events. 
Moreover, we investigate how noise-induced perturbations may affect the coding process. This is obtained 
by means of a two-dimensional neural field equation, where one dimension repre- sents the nature of the 
event (for example, the color of a light signal) and the other represents the moment when the signal has 
occurred. The additive noise is represented by a Q-Wiener process. Some numerical experiments reported 
are carried out using a computational algorithm for two-dimensional stochastic neural field equations. 

1 Introduction 
In recent years, significant progress has been made in 
understanding the brain electrodynamics using 
mathematical techniques. Neural field models represent 
the large-scale dynamics of spatially structured networks 
of neurons in terms of nonlinear integro-differential 
equations. Such models are becoming increasingly 
important for the interpretation of experimental data, 
including those obtained from EEG, fMRI and optical 
imaging [2]. 

In Robotics, NFE are a powerful tool for modeling 
and analyzing the dynamic behavior of neural 
populations in cognitive tasks [4]. They explain the 
existence of stimulus-specific, persistent population 
activity which bridges gaps between sensation and action 
in order to mediate higher-order cognitive functions like 
working memory, planning and decision making. The 
neural activity is maintained in the absence of external 
stimuli due to strong excitatory and inhibitory feedback 
loops within the population. Since NFE are defined over 
continuous perceptual or motor variables such as 
orientation, color, or movement direction, the neural 
interactions can be characterized by their distance in 
feature space. Typically, neurons tuned to similar values 
of the continuous variable excite each other and those 
tuned to dissimilar values inhibit each other. The steady 
states that the field dynamics develops in response to a 
transiently presented cue are often called bump attractors 
since they represent bell-shaped activity patterns in 
metric space. Due to the assumed translation-invariant 
connection structure, the network can hold a continuous 
family of bumps, with each of the attractor states 
encoding a specific stimulus value. However, since 
bumps are neutrally stable, their positions in the 
continuous attractor manifold can be shifted by random 

noise, potentially leading to a deterioration of the 
encoded information over time (see, for example, [10]). 

In numerical simulations, we test the robustness of a 
dynamic neural field model of serial order in the 
presence of additive noise in an experiment in which a 
sequence of color cues is presented. The two-
dimensional field model implements the idea that the 
serial order of stimulus events can be represented in 
terms of their location along the feature dimension and 
the temporal dimension. The position of each individual 
bump of a multi-bump pattern encodes the memory of a 
specific color cue presented at a specific time after the 
sequence onset. Importantly, the joint cue-timing 
representation allows us to address the problem of cue 
repetitions which has been identified as a major 
challenge for models of serial order [7]. A deterministic 
model describing this process is presented in [16], where 
numerical simulations are also reported. Here, we 
investigate how noise-induced perturbations may affect 
the coding process. 

Some numerical experiments reported are carried out 
using a computational algorithm for two-dimensional 
stochastic neural field equations. This numerical 
algorithm is MATLAB-based and presented in [14] in 
detail. The numerical results are discussed and their 
physical interpretation is explained. 

1.1 Deterministic Neural Field Equation 

The neural field equation was first introduced in the 
seminal work of Wilson and Cowan [23], as a model of 
spatiotemporal dependence of neural activity. Here, we 
apply the NFE proposed by Amari [1], as a biophysically 
mechanistic model of pattern formation in neural tissue: 
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1When describing the working memory problems the coordinates are given by the vector x = (X, Y). 

 

  (1) 

 

where 
• U(x, t) (the unknown function) denotes the 
membrane potential in point X at time t; 
• I(x, t) represents the external sources of excitation; 
• α is the potential decay rate; 
• S is the dependence between the firing rate of the 
neurons and their membrane potentials 
(sigmoidal or Heaviside function); 
• F(x−y2) defines the coupling strength between any 
two neurons at the positions x and y which is assumed to 
depend on their distance, only. To support the existence 
of stable multi-bump solutions, the connectivity function 
is chosen to be of oscillatory type with several zero 
crossings. They define the distances where excitation or 
inhibition dominates [6, 15].  

1.2 Working Memory Application 

Working memory (WM) defined as the ability to actively 
retain stimulus information over short periods of time is 
crucial for cognitive control of behavior. Persistent, 
stimulus-selective activity observed in many brain areas 
is commonly believed to represent a neural substrate of 
WM. In neural field models, WM is implemented in a bi-
stable regime of the field dynamics in which a brief 
localized input may switch from a homogeneous resting 
state below threshold to a self-stabilized bump. Fig.1 
shows an example of a 1D field representing the 
continuous dimension color. When two or more transient 
inputs are presented simultaneously or sequentially, a 
multi-item bump pattern stabilizes. Fig.2 illustrates the 
formation of a twobump pattern in response to two 
simultaneously presented inputs. Notice that the 
population activity decays slightly after cessation of the 
inputs but the recurrent interactions are strong enough to 
maintain the pattern above the threshold. 

The 2D-field model of serial order of sequential 
events adds a temporal dimension (X) to the color 
dimension (Y)1. This choice is motivated by the 
experimental observation of neurons that are tuned to the 
temporal intervals and/or the ordinal structure of 
sequential tasks [20]. We use a traveling wave (assumed 
to be triggered by a sequence onset signal) as a second 
input to the field to integrate the information about the 
event timing relative to the sequence onset. Traveling 
waves which are observed in many cortical areas provide 
a subthreshold depolarization to individual neurons and 

increase their firing probability to the presentation of 
external stimuli [21]. Consisting with this view, we 
assume that only at field positions receiving the traveling 
wave and the color input simultaneously, the combined 
input is strong enough to trigger the evolution of a bump. 
A projection of the bump on the X and Y axes reveals 
bell-shaped activity profiles which are consistent with 
the notion of broadly tuned neurons in the feature (color) 
dimension and the time dimension [3, 20]. Figs. 3 and 4 
illustrate, respectively, the localized input and the wave 
input to the 2D-field. If a signal of color Y occurs at a 
certain time, we have a ridge-like input which is 
localized in the feature space Y but extends in the time 
dimension X. The wave has the form of a ridge which 
extends in the Y direction and propagates in the direction 
of X with elapsed time t since the sequence onset 
occurred at t = 0. One bump evolves in response to the 
combined input (see Fig.5), which persists after all 
inputs have been switched off (see Fig. 6). 

 

Figure 1. Stable bump triggered by a single color stimulus 

1.3 Stochastic Models 

There are several reasons why neural fields may be 
affected by noise: 
• Irregularity of spikes; 
• Non-homogeneous or irregular connectivity; 

 

Figure 2. External stimuli and their representations in working 
memory 
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Figure 3. Surface graph of the input function corresponding to 
a light signal of the color Y = 0 

 

Figure 4. Input function corresponding to a traveling wave, 
moving in the direction of the X axis 

• Perturbations of external stimulus; 
By introducing stochastic models, we aim at 

answering questions as follows: 
• Does noise interfere in the existence of stationary 
solutions? 
• How far the stationary solutions can be modified as 
a result of noise? 

 

Figure 5. Combination of two inputs generating a bump state 

 

Figure 6. Example of a stable bump solution which remains 
after all the inputs have been switched off 

• May a stationary solution be transformed into 
another one just as a result of noise? What is the 
probability of this event? 

In [12], a stochastic version of the neural field 
equation with additive noise is introduced as follows: 

 

  (2) 

where t ∈ [0, T], x = (x1, x2) ∈ Ω ⊂ R2, W(x, t) is a  
Q-Wiener process. The initial condition 

U0(x) = U(x, 0) is supposed to satisfy the periodic 
boundary conditions in space x ∈ R2 

2 Numerical Algorithm 
Since NFE cannot in general be solved analytically, 
numerical methods for their approximation have been 
developed by many researchers. In [5], a computational 
method is introduced which applies quadrature rule in 
space to reduce the problem to a system of delay 
differential equations, which is then solved by a standard 
algorithm for this kind of equations. A more efficient 
approach is proposed in [8], [9], where the authors 
introduce a new algorithm to deal with the convolution 
kernel of the equation and use the Fast Fourier 
Transforms to reduce significantly the computational 
effort required by numerical integration. Recently, a new 
numerical method for the approximation of two-
dimensional neural fields was introduced, with use of an 
implicit second order scheme for the integration in time 
and applying the Chebyshev interpolation to reduce the 
dimensions of the matrices [17]. Some applications of 
this algorithm to Neuroscience problems are discussed in 
[18]. 

In the stochastic case, the numerical approximation 
of NFE becomes a harder challenge. 

Numerical algorithms for the stochastic NFE are 
proposed in [19] and [13]. 

The numerical integration scheme proposed in the 
present work is rooted in the Karhunen-Loève 
presentation in the following form: 
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  (3) 

In series (3), the deterministic continuous-in-space 
factors vkl(x) defined in the square domain  
 [−L, L] × [−L, L] of real numbers are the eigenfunctions 
of the covariance operator in the 2D-SNFE model (2) 
under examination. Here and below, these are chosen to 
satisfy the formula 

  (4) 

We point out that functions (4) establish an 
orthonormal basis in the Hilbert space associated with 
the problem at hand. 

Next, the uncorrelated random processes ukl(t) 
defined on the time interval [0, T] obey the following 
SDE: 

 (5) 

whose nonlinear term refers to the double integral, that is 

  (6) 

the inner product in SDE (5) enjoys the standard 
definition 

  (7) 

at any time t, and the scalars λkl and the stochastic 
process increments dβkl(t) come from the infinite series 
representation of the differential dW(x, t) of the trace-
class space-valued Q-Wiener process in 2D-SNFE (2). It 
is known that the mentioned representation has the 
following fashion: 

  (8) 

with the stochastic processes βkl(t) being the mutually 
independent Brownian motions with zero mean and unit 
variance and λkl standing for the eigenvalues of the 

covariance operator Q. The correlation in this noise 
obeys the formula 

 

for any space points x, y ∈ Ω and time instants t, s > 0. 
Here and below, E{·} refers to the expectation operator, 
and the fixed parameter ξ determines the spatial 
correlation length. Following [22], we impose the 
condition ξ << 2L and, then, yield explicitly values of 
the eigenvalues λkl of the covariance operator Q in series 
(8). These are found to be: 

  (9) 

In what follows, the Galerkin-type approximation 
underlying our numerical scheme implies that the 
infinite series (3) is truncated to a finite summation 
formula. We choose a sufficiently large positive integer 
K and replace solution (3) to 2D-SNFE (2) with its 
approximation of the fashion 

  (10) 

where the deterministic functions vkl(x) are given by rule 
(4) and the stochastic processes ukl(t) satisfy SDE (5). 

Taking into account the 2D-square-form of the 
domain Ω, we introduce then an equidistant 2D-space-
mesh as follows: 

 

with its step size hx = 2L/N, where N is a user-supplied 
quantity of the subdivision steps fulfilled in each 
direction of the square [−L, L] × [−L, L] underlying  
2D-SNFE (2). More formally, this mesh X consists of 
2D-vectors in the domain Ω, that is X is the square 
matrix of size N+1 whose (i, j)th entry is the vector with 
the coordinates xi

1 = x0
1 +ihx xj

2 = x0
2 +jhx. We recall 

that the number of summation terms in the approximate 
solution (10) and that of the discretization steps used in 
the domain Ω must obey the condition N >> K, as 
explained in [14]. 

First, we substitute the Galerkin-type solution (10) 
into SDE (5). Second, we replace the continuous space-
dependent functions in equations (5) and (6) with their 
values calculated at nodes of the mesh X and 
approximate the integrals arisen by means of the 
Trapezoidal Rule summations, as follows: 

  (11) 
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  (12) 

Further, we explain our effective MATLAB-based 
solution technique for attacking the space-discretized 
version of SDE (5)–(9) rooted in approximations (10)–
(12). At first we need to vectorize all values and 
functions defined at entries of the space-discterized-
meshmatrix X. Here, we employ the built-in MATLAB 
command reshape for converting any matrix into the 
requested vectorized fashion. For instance, the mesh X is 
translated into its column-wise vector representation by 
the command X(:). We note that formulas (11) and (12) 
imply that the last row and column of the mesh array X 
are not used and must be excluded from the calculation, 
as that explained in [14]. That is why we further remove 
them from the mesh. This entails that the (i, j)th entry of 
such a truncated matrix X and the (j × N + i + 1)th entry 
in its vectorized representation X(:) coincide. Then, we 
vectorize the scalar stochastic processes ukl(t) in SDE (5) 
to the form 

  (13) 

where each random variable ukl(t) is presented by the 
(k × K + l + 1)th entry of vector (13) for any  
k, l = 0, 1, . . . , K. 

Similarly, we reshape and vectorize all the Fourier-
basis-functions (4) evaluated at nodes of our truncated 
space mesh X. For that, we assemble the rectangular 
matrix V of size (K + 1)2 × N2 whose rows are sorted at 
the same manner as the stochastic processes ukl(t) in 
vector (13). More formally, every eigenfunction vkl(x) is 
calculated first at space points (xi, xj), i, j=0, 1, . . . , N−1, 
in use. Second, the resulting matrix derived for the 
function vkl(X) evaluated at all nodes of our truncated 
mesh X is further reshaped to the requested vectorized 
fashion of size N2 by the MATLAB command vkl(X(:)). 
Here and below, we follow the MATLAB notation in 
which vkl(X) refers to the (N × N)-matrix whose entries 
are the values vkl(xi, xj), i, j = 0, 1, . . . , N − 1. Having 
fulfilled the above procedure for each eigenfunction in 
the Fourier-basis-equations (4), we obtain a set of  
 (K + 1)2 reshaped vectors 𝑣𝑣1:(𝐾𝐾+1)2(X(:)) of size N2. 
Eventually, the (k, l)th vector is saved in the form of the 
(k × K + l + 1)th row in the Fourier-basis-matrix  
V ∈ 𝑅𝑅(𝐾𝐾+1)2 ×𝑁𝑁2 . In other words, the rows of such a 
matrix V are sorted at the same manner as the unknown 
variables ukl(t) in vector (13), that is every row of this 
matrix V stores the values of a particular Fourier-basis-
function (4) evaluated at the vectorized-truncated-space-

mesh X(:). The above notation converts the inner 
product (11) to its MATLAB-oriented manner, that is 

  (14) 

Eventually, with use of formulas (11)–(14), the 
stochastic processes uk (x) k = 0, 1, . . . , K, employed in 
the numerical solution (10) are computed by solving the 
vectorized SDE 

  (15) 

where the term FS(UK (X(:), t)) stands for the (K + 1)2 - 
dimensional column-vector with its (k × K + l + 1)th 
entry determined by equation (12), and the random-
disturbance-vector dW is the multivariate zero-mean 
white Gaussian process with the diagonal covariance of 
the fash-ion Λ := diag{λ2

00, λ2
01, ..., λ2

0K, λ2
10, λ2

11, ..., 
λ2

0K, . . . , λ2
K0, ..., λ2

KK} in which all nonzero entries 
come from formula (9) and sorted in the same way as the 
entries ukl(t) in vector (13). 

Finally, we utilize the Euler-Maruyama scheme [11, 
section 10.2] for attacking SDE (15) on some equidistant 
mesh predefined by the user in the time interval [0, T] of 
2D-SNFE (2). The time-integration step size ht is 
assumed to be sufficiently small. The effective 
MATLAB-based implementation of the above-
presented-SNFE-solution-method is based on the 
computation of the term FS(UK (X(:), t)) in SDE (15) by 
the formula 

  (16) 

where the time-variant column-vector s is of size N2 and, 
for any i, j = 0, 1, . . . , N − 1, its (j × N + i + 1)th entry is 
given by the value S(uт(t)V(:, j × N + i + 1)) at each time 
instant t. We recall that the matrix V represents the 
values of Fourier-basis-functions (4) evaluated at the 
vectorized-truncated-space-mesh X(:), but the MATLAB 
command V(:, j × N + i + 1) returns the (j × N + i + 1)th 
column in the latter matrix. In other words, the 
mentioned column contains the values of all 
eigenfunctions vkl(x), k, l = 0, 1, . . . , K, computed at the 
space position (xi, xj). Lastly, the notation F refers to the 
symmetric matrix of size N2 whose  
 (j × N + i + 1, q × N + p + 1)-entry means the following 
factor in calculation (12): 

 

3 Numerical Results 
The numerical results presented in [16] support the 
conjecture that if the external input has appropriate 
intensity and duration, and if the connectivity kernel is of 
a certain type (see equation (17)) the neural activity can 

5

EPJ Web of Conferences 248, 01021 (2021) https://doi.org/10.1051/epjconf/202124801021
MNPS-2020



 

generate stable multi-bump solutions which contain the 
information carried by the external signals. 

Here, we begin by validating those results with the 
new numerical algorithm described in Section 2 and, 
then, we introduce some noise and observe how this 
noise affects the behavior of the solutions, in particular, 
how the structure of the multi-bump solutions can be 
changed. 

The connectivity kernel F is of the oscillating type 

  (17) 

where A, a1, l are certain positive constants (see [16]), 
𝑟𝑟 =  √𝑋𝑋2 + 𝑌𝑌2. 

The activation function S is of the Heaviside type, 
that is, 

 

where b > 0 is a certain threshold. 
The function I represents the sum of the external 

inputs with several components of the form 

 

where I0 is a traveling wave of the form 

  (18) 

0 ≤ t ≤ T, (X, Y) ∈ [−L, L] × [−L, L], v > 0 is a positive 
number (the propagation speed of the traveling wave). 
The remaining inputs are localized (have the centers at 
Ci) and can be written as: 

  (19) 

where Ci ∈ [−L, L], α i, γ i, are given positive numbers,  
i = 1, ..., n. 

As the initial condition, we take 

 

We carry out a set of numerical experiments. In each 
of them, we have a certain sequence of external stimuli, 
and simulate three different cases, with E = 0 
(deterministic case), E = 0.04 (weak noise) and E = 0.08 
(strong noise). In all the cases where the stochastic 
equation is simulated, we perform ns = 100 Monte Carlo 
runs and display the average value (as an approximation 
of the mathematical expectation of solution). 

In all the subsequent examples, the domain of 
discretization is [−20, 20] × [−20, 20], where the 
solution is plotted on the domain [0, 20]×[−20, 20]; the 
step size in time is τ = 0.1, the number of basis functions 
(3) is set by K = 50, and the step size in space is  
h = 0.04. 

Example 1. In this example, the external input 
consists of the traveling wave I0, described by (18), and 

the localized signal I1, given by (19), which are constant 
during the time interval t ∈ [0, 1.5] and, then, vanish. 
Their parameters are taken to be α0 = 0.12, γ0 = 1,  
v = 1.5; α1 = 0.12, γ1 = 1, C1 = 0. The threshold for the 
activation function is b = 0.1; the connectivity kernel is 
described by (17), with the constants A = 0.06, l = 0.8,  
a1 = 1. 

The snapshots of the solution at the time t = 0.5 are 
displayed in Fig. 7. In the deterministic case, we see that 
this solution reproduces the inputs I0 (traveling wave) 
and I1. Moreover, at the place where the graphics of the 
two inputs intersect, we observe suprathreshold activity 
(U > b = 0.1). In the case of the weak noise (E = 0.04), 
we observe some perturbation of the signals, but the 
main features of the solution are preserved. Finally, in 
the case of the strong noise (E = 0.08), the perturbation 
of the activity is even higher, but the bump is still well 
visible at the intersection of the stimuli. 
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Figure 7. Snapshots of the solution of Example 1 at time  
t = 0.5: up- E = 0; down, left-hand side - E = 0.04; down, right-
hand side - E = 0.08 

Fig. 8 displays the snapshots of the solution at the 
time t = 2.5. Here, in the deterministic case, the effect of 
the input I0 (traveling wave) is no more visible; the 
image of the input I1 is considerably reduced (as 
expected, since the corresponding signals have been 
turned off at the time t = 1.5). However, in the place 
where the graphics of the two inputs intersect, the one-
bump solution still exists and carries the information 
about the nature of the signal and the time at which it has 
occurred. In the case of the weak noise (E = 0.04), we 
observe some perturbation of this one-bump pattern, but 
the coordinates of the peak still reproduce the 
characteristics of the input. Finally, in the case of the 
strong noise (E = 0.08), we still observe suprathreshold 
activity in the place of the intersection, but the peak 
position deviates slightly from the location of the 
external input. 

 

 

 

Figure 8. Snapshots of the solution of Example 1 at time  
t = 2.5: up- E = 0; down, left-hand side - E = 0.04; down, right-
hand side - E = 0.08 

Example 2. In this case, we have again the traveling 
wave I0 and two localized inputs I1 and I2, with α1 = 
0.12, γ1 = 1, C = −10 and α2 = 0.12, γ2 = 1, C2 = 10, 
which correspond to the experiment with two different 
colors. As in the previous example, the inputs I0, I1 and 
I2 are constant in the time interval 0 < t < 1, and, then, 
are removed. The other parameters have the same values 
as in the previous example. 

The snapshots of the solution at the time t = 1 are 
displayed in Fig. 9 In the deterministic case, we see that 
the solution reproduces the inputs I0 (traveling wave), I1 
and I2. Moreover, at the places where the graphic of I0 
intersects I1 and I2, we observe suprathreshold activity 
(U > b = 0.1). In the case of the weak noise (E = 0.04), 
we observe some perturbation of the patterns, but the 
main features of this solution are preserved. Finally, in 
the case of the strong noise (E = 0.08), the perturbation 
of the activity pattern is even higher, but the bump is still 
well visible at the intersections of the stimuli. 
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Figure 9. Snapshots of the solution of Example 2 at time t = 1: 
up- E = 0; down, left-hand side -E = 0.04; down, right-hand 
side - E = 0.08 

Fig. 10 displays the snapshots of the solution at the 
time t = 5. Here, in the deterministic case, the effect of 
inputs I0 (traveling wave), I1 and I2 are no more visible 
(since these inputs have been turned off at time t = 1.) 
However, similarly to what happens in the previous 
example, the suprathreshold activity remains at the 
places of the intersections. In this case, this 
suprathreshold activity takes the form of a two-bump 
solution, where the Y-coordinate of each peak 

corresponds to one color of the signal. Note that these 
two peaks have the same X-coordinate, which means that 
the two inputs occurred simultaneously. The effects of 
the weak noise (E = 0.04) and strong noise (E = 0.08) are 
less visible in this case in comparison with those 
observed in the previous example, because we consider 
the later time instant, that is, t = 5. 

 

 

 

Figure 10. Snapshots of the solution of Example 2 at time  
t = 5: up- E = 0; down, left-hand side -E = 0.04; down, right-
hand side - E = 0.08 

Example 3. In this example, we have three series of 
inputs at different times. First, in the time interval [0, 1], 
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we employ I0, I1 and I2 (with the same parameters as in 
Example 2); then, in [1, 5], we implement only the 
traveling wave I0; finally, in [5, 6], we have I0, I3 and I4, 
where I3 = 1.2I1 and I4 = 1.2I2. After t = 6, all the inputs 
are removed. 

The output of this example is depicted in Fig.11 (t = 
1), Fig.12 (t = 6), Fig. 13 (t = 8), Fig.14 (t = 12), and Fig. 
15 (t = 15). 

In Fig. 11, we observe the formation of two bumps, 
which correspond to the signals that occurred in the time 
interval [0, 1]. The graph in Fig. 12 shows the formation 
of a new set of two bumps. These relate to the signals in 
the time interval [5, 6]. In Fig. 13, in the deterministic 
case, we observe a solution with four bumps, as can be 
expected: two of them correspond to the first input 
signal, and two of them to the second one. This solution 
contains the whole information about the sequence of the 
stimuli in use. 

 

 

 

Figure 11. Snapshots of the solution of Example 3 at time  
t = 1: up- E = 0; down, left-hand side -E = 0.04; down, right-
hand side- E = 0.08 
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Figure 12. Snapshots of the solution of Example 3 at time  
t = 6: up- E = 0; down, left-hand side -E = 0.04; down, right-
hand side - E = 0.08 

 

 

 

Figure 13. Snapshots of the solution of Example 3 at time  
t = 8: up- E = 0; down,left-hand side -E = 0.04; down, right-
hand side - E = 0.08 

In the case of the strong noise (E = 0.08), Fig.13 
shows an interesting feature that is not observed in the 
previous examples. Instead of 4 bumps, the field activity 
displays 6 ones, that is, two additional bumps have been 
formed just as the effect of the implemented noise. Note 
that this does not happen in the deterministic case, nor in 
the case of the weak noise. 

In order to observe how this picture changes in time, 
we have carried out computations over a longer time 
interval, that is, we show the results at the time t = 12 
and t = 15. Such outputs are exhibited in Fig.14 and 
Fig.15. In these graphs, we observe that the two 
additional bumps, which appear as the result of the noise 
in use, do not disappear or even decrease in time. 
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Figure 14. Snapshots of the solution of Example 3 at time  
t = 12: up- E = 0; down, left-hand side -E = 0.04; down, right-
hand side - E = 0.08 

 

 

 

Figure 15. Snapshots of the solution of Example 3 at time  
t = 15: up- E = 0; down, left-hand side -E = 0.04; down, right-
hand side - E = 0.08 

This is an example of false memories that can be 
induced by random noise. Differently from the input-
induced bumps, their activity level is subthreshold (less 
than b = 0.1). This can be explained as follows: only part 
of the paths of the stochastic solution contain these two 
additional bumps (whose height should be above the 
suprathreshold value), while the remaining ones are 
similar to the deterministic solution. Since what we show 
in the picture is the mean solution, the heights of these 
bumps are averaged on all the paths computed and, 
hence, these are subthreshold). 

It is also worth to mention that the distance between 
a ’false bump’ and the closest real memory 
representation is approximately the coordinate of one of 
the local maxima of the connectivity function, that is, the 
location of false memory receives excitation from 
existing bumps. 

4 Conclusion 
We have described a two-dimensional neural field model 
which explains how a population of cortical neurons may 
encode in its self-sustained firing pattern simultaneously 
the nature and time of sequential stimulus events. 
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The postulated wave mechanism explains how a 
nervous system lacking specific sensors for temporal 
perception may develop neurons that respond to specific 
interval durations. 

The numerical results presented support the 
conjecture that if the external input has appropriate 
intensity and duration, and if the connection kernel is of 
the oscillatory type described here, the neural activity 
can generate stable multi-bump solutions which reliably 
contain the information carried by the external signal. 

In the case of the weak noise, the structure of the 
stationary solutions is preserved in the sense that the 
mean solution of the stochastic equation has the same 
number of bumps as the solution of the deterministic one 
has. 

In the case of the strong noise, the structure of the 
stationary solutions can be significantly changed, 
affecting the precision of the memorized information or 
even generating false memories. 
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